

The Dream Maker
Designer’s Guide to Worlds BYOND

2nd Edition

Dantom

Cover illustration by AZA, Original illustrations by Dan.

ISBN 1-890661-17-1

Copyright © 2009 by Dantom
All rights reserved.

Inquiries regarding this book may be directed via email

to dantom@dantom.com. Comments and corrections are

welcome!

Printed Internationally

http://www.dantom.com
http://www.byond.com

Table of Contents
Original Foreword ... 7

New Foreword .. 8

Acknowledgments .. 9

Additional Acknowledgements .. 9

Preface .. 11

Meet the Dream Maker .. 13

Navigating The Code Tree .. 25

1. Formatting Code... 26

2. Compilation Errors ... 27

3. Paths in the Tree .. 28

4. Code Comments ... 29

Objects in the Tree ... 31

1. Object Properties ... 33

1.1 Location .. 35

1.2 Additional Mob Properties ... 36

2. Assigning Variables ... 37

2.1 Constant Values .. 38

3. Putting It All Together .. 40

Verbs ... 41

1. Defining a Verb ... 42

2. Setting Verb Properties .. 42

3. Verb Accessibility ... 44

3.1 Explicit versus Implicit Source .. 46

3.2 Default Accessibility .. 47

3.3 Possible Access Settings ... 48

4. Overriding Verbs .. 50

5. Friendly Arguments .. 51

5.1 Parameter Input Types ... 51

6. Generating Output ... 55

6.1 Variables in Text ... 56

7. Flexibility in Choice of the Source .. 57

8. A Choice of Arguments ... 59

9. Default Arguments ... 60

10. anything input type .. 61

Original Foreword
And now for a little history.

Way back in 1994, when the Internet was a harmless baby, "surfing" referred to an outdoor
recreation, and "Yahoo!" was an expression of glee, Dan approached me with the following
proposition: Let's build a game. Back then, in the midst of our fruitful college years, we were
devoting much of our free time to attempting to destroy quantum mechanics, but despite
numerous attempts had not yet succeeded. Frankly, it was wearing me down. This sounded like
the perfect diversion, so I prodded on: What do you have in mind, fellow scholar, slayer of the
quantum fallacy? Little did I know that this seemingly innocuous inquiry would lead me down a
path so full of ideas and inspirations that once trapped, I would never again escape into the
safe haven of the world for which my degree was intended. Unless you, too, want to succumb
to the same fate, I advise you to stop reading now!

Dan wanted to build not just any game, but an online, graphical game. At the time, this struck
me as quite revolutionary. I had only first experienced text-based online games a few years
before, and recalled my amazement upon first interacting with another person whom I had
never before met. Actually, I recalled my stupidity, for that first encounter involved me making
a fool of myself by mistaking this fellow player as a computer-controlled being--and being
perplexed by its intelligence! To combine this interaction in a graphical setting would be
tremendous indeed.

Over the next few months, the workings of a system began to fall into place. Soon we had little
sprites moving around on screen, bumping into walls and other players, players on other
machines even! But we realized too, that we had our work cut out for us. Just over the horizon,
huge companies were amassing scores of programmers and artists to shape what would
become the online gaming revolution. We were only two inspired souls--and neither of us could
draw a straight line!

It was at this point that we made what would be the biggest decision of this project, one that
would shape our lives for many years to come. Why not let other people write the game?
Instead of forcing the players to conform to our system, why not let them build their own

system, why not let them build their own net dream? We knew that if we could provide the
tools to make this process exciting and enjoyable, the netizens, in all their collective creativity,
would do the rest. They would do it better than we could, and it would be a lot more fun than
letting corporations rule the field alone.

It is up to you to decide whether we have been successful in this goal or not. Dan will now take
the helm and guide you through the inner workings of this Dream Maker. May your journey be
safe, and your dreams bountiful!

New Foreword
Well, it has been a while, but here is the second edition of The Dream Maker (or the ‘Blue
Book’). It has major updates from the previous book to encompass all of the changes from
BYOND 2.0 to BYOND 4.0, including the new icon procedures, better explanations of old
techniques and newer explanations of all the new procedures and methods available. There is a
brand new section that puts particular emphasis on Design, too.

I’m not trying to bore you now, so here’s The Dream Maker, Second Edition.

Acknowledgments
The development of the BYOND system has been driven largely by the innovative community of
users who have tested it and made insightful comments during its beta-testing phase. BYOND
continues to grow to this day, and will likely do so as long as the people are there to push it to
new and wonderful directions.

Special thanks go out to the old group of developers, the class of '2000, so to speak: Nick
"AbyssDragon" Cash, Erron "Dragon" Flaherty, Jeremy "Spuzzum" Gibson, Julio Monteiro, James
Murphy, Joanna "Zilal" Panosky, Mike Schmid, Gabriel Schuyler, and Chris "Manifacae" Sivak.

And an extra debt of gratitude is reserved for Ron "Deadron" Hayden and Guy Tellefsen for not
only being excellent developers, but for helping edit this manuscript. Any errors which remain
are claimed by Dantom and may be attributed to endemic feature creep.

Tom of Dantom
June 9, 2000
Irvine, California

Additional Acknowledgements
Special thanks go out to the current BYOND community, which has been growing since the year
2000 to encompass almost 6,000 users online at any one time. While many of the old
developers are no longer active and have moved on to bigger and greater things, some have
stayed, and many more have come to take their places. Without the community BYOND would
have been driven into the ground by now – thanks guys.

Special gratitude is given to the current developers of the BYOND platform – “Lummox JR”,
“Tom” and any others that I may have missed – they’ve been improving and upgrading BYOND
since the year 2000 are currently gearing up to move BYOND into the isometric field!

AZA of BYOND
September 21, 2009
Berkshire, United Kingdom

Preface
Creation of the next moment is of far greater significance than was creation of the first.

--Some Wise Sage

So you want to play god. It happens to a certain fraction of us--the desire to create a world. It
could be a fantastical place, a land of adventure and mystery, or it could be a secluded island, a
secret hideout, or an outpost on Mars--who knows.

To conjure such an illusionary realm, one must know the right incantations, powerful spells of
arcane origin that weave the thread of reality into a tapestry of your own design. Indeed,
language is the engine of illusion. And illusion is but another glimpse of reality. Thus reality is
language. Nothing more, nothing less.

Let me begin again from another angle. A computer programmer arranges letters to form
words of obscure meaning, organizes these into phrases unintelligible to the common mind,
and formulates from this an algorithm--a sort of ephemeral spirit who, in the blink of an eye,
can do the work of days, or perhaps some mischief if its master has made the slightest error. In
short, a computer programmer is a magician, a person whose very words are power.

And every programmer starts out with the desire to create games. I should say, every
programmer with a soul. There must be a few ghoulish creatures, pale shadows of humanity,
who are born with the desire to write statistical analysis software for the census bureau. But I
imagine that deep down inside, even these outwardly unfeeling corpses feel the urge to slip in a
tic-tac-toe board, activated by punching the first 30 digits of pi into the data entry screen.

So what is it about computer games that is so attractive to a programmer? It's not necessarily
the desire to play the games. I personally very rarely feel the urge! But if it's not that, what is it?

I propose that it is the same desire mentioned initially--the desire to play god. A game, after all,
is a sort of artificial world, a place run entirely according to an invented set of rules. And rules
are nothing but the minions of sorcerers and programmers--that is, words.

Language again! We keep coming back to it. (Or it keeps coming back to us?) Perhaps it is time
to deal with that subject. It is, after all, the reason I am writing (as well as the reason I am able
to write).

It has been my passion to discover a language suitable for the creation of worlds. I
say discover rather than create, because a language does not come into being at the whim of a
mere mortal but instead chooses to reveal itself at the appropriate time and place. One must
only provide a suitable home for it.

A language is not a solitary creature, being inherently social by nature. With this in mind, I
sought out a company of adventurers, sharp of mind and willing to embark on the arduous
quest. We called ourselves Dantom.

It soon became apparent that even our dedicated band of explorers would not provide enough
company for this guest, the language of worlds. Its dwelling place, we decided, must reside in
the ethers themselves--a meeting place for thousands upon millions of minds. So we began to
construct such a place, called BYOND.

Having done so, like minds began to arrive, attracted by the bold and tantalizing statement:
Build Your Own Net Dream. And with the growing host of receptive people at hand, a presence
began to take shape. Certain words, when uttered in the right context, seemed to cause a
stirring, a certain fluttering at the edge of perception. What started as a drip soon became a
trickle and then a roaring flood of understanding. We were speaking the language of creation!
The quarry so painstakingly sought had come to dwell among us.

This language of worlds within worlds, of illusion become reality, is called DM, the Dream
Maker.

Chapter 1
Meet the Dream Maker

The first step to mastery in the lands of sleep is the realization, without waking, that one
dreams. In the day worlds, mastery begins by forgetting, without dreaming, that one is awake.

--DoD

DM is a programming language for the creation of multi-user worlds. By `world' I mean a virtual
multi-media environment where people assume personae through which they interact with one
another and computer-controlled objects. This could take the form of a competitive game, a
role-playing adventure, a discussion board, or something we haven't even imagined.

Frequently, the terminology of a role-playing game is most suitable: humans are PCs (playing
characters) and computer-controlled personalities are NPCs (non-playing characters). The
virtual embodiment of a player is often called an avatar. The game rules are written in DM and
faithfully carried out by the computer. These define what actions players may instruct their
avatar to perform, what effect these will have in the game, and any other events that may
happen as time progresses.

To understand the mechanics of the system fully, it is helpful to know a few simple terms.
Computer programs that operate over a network are often divided into two parts: a client and a
server. In this case, the client is the program that players use to enter commands and see what
happens as a result. In other words, the client handles input and output. The server is the
program that runs the game, carrying out the rules defined in the DM language. The game
designer writes these rules in a third program called the compiler. This reads the DM program
(known as the source code by programmers), checks it for grammatical errors, and generates a
more compact, computer friendly, file known as the byte code or binary. It is this file which the
server reads to see how to run the game.

So there are three main programs: the client, server, and compiler. We call these Dream
Seeker, Dream Daemon, and Dream Maker, respectively. (The word daemon is just another
(more fantastical) word for server.) As a whole, we refer to this collection of software as
BYOND, which stands for Build Your Own Net Dream--an apt description of its purpose and also
of how far it has wandered beyond our original plans. But that is another story!

Every introduction to a programming language must begin with the same example. Call it
destiny, inevitability, or pure chance; it is rather uncanny that the name of the universal
introductory example is hello world. Spooky, no? That's exactly what happens in this example--
we say hello to the world.

In DM you write it like this:
mob
 Login()
 world << "Hello, world!"

If you have any prior programming experience, the last line probably looks vaguely sensible. It
outputs the text inside the double quotes to the whole world. But what on earth is a mob and
why is each line indented like stair-steps? All in good time. For now, simply understand that the
player's avatar in the game is a mob. When a player logs in, the server is instructed to output
the message "Hello, world" to everybody.

Compile and run this program (see figure 1.1). If all goes according to plan, you should see the
words, "Hello, world" magically appear on Dream Seeker's output screen. Voila! You have
created your first BYOND world.

Now you know the basic steps for designing worlds. You write some DM code, compile it, and
run it. But this world didn't have anything for the player to do. That's next.

 Figure 1.1: Hello World!

This first world serves not only as an introduction to the DM language, but to the Dream Maker editor/compiler
as well. Fortunately, the system has been designed to be quite simple to use, and with just a few steps you
should be on your way to BYOND programming wizardry!

Dream Maker refers to the collection of files comprising the project as the world environment. When you make
a new project, you create a single environment file, which has the name "[worldname].dme". This file may
contain source code, but in general it will only be comprised of automatically generated references to other files
in the project. This is best seen by example, so let's stop talking, and get coding!

1. Create the "hello" project by selecting New Environment... from the File menu. This prompts for a
directory in which your project will be stored. Enter "hello" as the desired directory. This creates
a new directory called "hello", which now contains the hello.dme environment file. Notice
that hello.dme also appears in the file tree displayed on the left side of the screen. All files in the
environment directory are listed there.

2. Let's put the code for this project in a separate file. Select New File... from the File menu.
Choose Code File for the type, and enter "hello" for the name. This creates a file called
"hello.dm" in the environment directory, and a corresponding listing in the file tree. The
checkbox next to it indicates that the code in hello.dm will be included in this project.

3. The hello.dm file is now ready for editing. Type the following code. (Make sure the first line is not
indented, the second is indented once, and the third is indented twice. It is easiest to use tabs for
the purpose.)

4. Compile the code by selecting Compile from the Build menu. If there are problems, they will appear
in the output box at the bottom of the screen. But unless you indented incorrectly, all should
proceed smoothly.

5. Run the compiled world by selecting Run from the Build menu. This launches Dream Seeker, which
should subsequently welcome the world!

 mob
 Login()
 world << "Hello, world!"

Consider the Hello World example again. The DM code says that when a player logs in, a
message should be displayed. We can do a similar thing for other types of actions. For example,
if the player types a command, a message could be displayed.

In DM, commands are called verbs. A verb is defined in the following example:

Notice the funny stair-step indentation again! That will be explained in a little bit. For now, read
this example from top to bottom. Once again we are defining a property of a mob (the player's
avatar). In this case we are adding a verb, an action that the player can instruct the mob to
perform. The name of the verb is smile. The final line displays a message when the mob smiles.
Notice the [usr] in the message; as you may have guessed, that is not displayed literally but
is replaced by the name of the user, the player who initiates the command.

Run this example. Once you have logged in, try typing smile and pressing enter. You should see
the grinning message with your login name substituted into it. Amazing! Fantastic! But playing
god is a serious business. Don't let anyone catch you grinning.

For variety, you could add some more verbs. Here are a few:

mob
 verb
 smile()
 world << "[usr] grins."
 giggle()
 world << "[usr] giggles."
 cry()
 world << "[usr] cries \his heart out."

mob
 verb
 smile()
 world << "[usr] grins."

Now the stair-step pattern has been broken because all three verbs smile, giggle, and cry are at
the same level of indentation. In DM, indentation at the beginning of a line serves to group
things together. Here, smile, giggle, and cry are all grouped together as verbs belonging to mob.
Each of these verbs has it's own contents indented beneath it.

Notice the use of \his in the cry verb. This macro is replaced by the appropriate possessive pronoun.
It could be his, her, its, or their, depending on the gender. DM provides a few other useful macros like
this one to make life easy.

So far nothing has been said (because you never asked) about the empty parentheses after the
verb names in the above examples. They were in the first example after Login too. These are
the mark of a procedure definition. The verbs and Login are all examples of procedures, which
are a sequence of instructions to be carried out. In the examples so far each procedure
consisted of only one line--an instruction to display some text. They can, of course, become
much more complicated than that.

There are two general categories of procedures: those that show up as player commands and
those that do not. These are called verbs and procs respectively. By that definition, Login in
the Hello World example was a proc.

The parentheses after a procedure name are more than decorative. They can be used to define
procedure parameters. This allows for providing additional information to the procedure. The
information is stored in a variable, that is, a piece of memory with a name. To confuse matters,
a programmer will often call such variables, which serve as the parameters to
procedures, arguments. Why? Well, just for the sake of argument.

Here is an example of a verb that takes a parameter--in this case a short message to be
broadcast to the world.

mob
 verb
 say(msg as text)
 world << "[usr] says, [msg]"

In these few short lines are the bare bones of a chat world. Users can log in and start gabbing
using the say verb. Try it out. Your session might look something like the following:

The main point of interest in the DM code is inside the parentheses where the
parameter msg is defined. It could have been called anything; the variable name is arbitrary.
The statement as text indicates that a short message supplied by the user will be stored in the
variable. This message is then inserted into the final output at the position marked by the
expression[msg].

So far I have casually introduced mobs, verbs, procs, and arguments. Now it is time for a formal
(tediously exciting) description of the DM syntax. It may take several multi-clausal sentences to
get through this, so don't hold your breath.

DM code is structured like a tree. The top of the tree is called the root. The various types of
virtual objects (mobs being one) branch off of the root and may in turn give rise to additional
strains that branch down from them.

If you haven't noticed, the code tree terminology is upside down. Of course, so is the file-
system on your hard-drive, and every other informational tree in existence. It is quite possible
that the vast majority of computer scientists have never actually seen a real tree. The sheer
weight of their ignorance keeps the jargon from flipping right side up, and we are stuck with
trees having a root at the top and leaf nodules at the bottom. Or it might just be standard
obfuscation. That's why I do it.

It is time for an example. One particularly interesting type of virtual object is a turf. It is a
building block used to make graphical maps that players can walk around on. Suppose we
wanted to make a maze. That would require two types of turfs: floors and walls. Here's how
you would define them:

say "hello world!"
Dan says, hello world!

turf
 floor
 wall

All we did was branch two new types of objects off of the basic turf. One is called floor and the
other wall. The terminology of a family tree is often used to describe the relationship of the
various objects defined here. Turf is the parent of floor and wall. The two children are siblings
of each other. A child inherits all the properties of its parent and adds some of its own to
distinguish it from its siblings. Both floor and wall are turfs because they are derived from the
turf object type.

To make a maze, we need to specify a few properties of floors and walls: what they look like
and whether you can walk through them. While we're at it, the appearance of a player should
be defined too. This is how it is done:

Several assignments have been made. These take the form of a variable on the left-hand side
and a value on the right. In the case of the icons, the value is the name of an icon file inside
single quotes. In the case of density, the value should be 1 or 0 to indicate if it is dense or not. A
dense turf will not allow other dense objects (like mobs) to walk through them.

turf
 floor
 icon = 'floor.dmi'
 wall
 icon = 'wall.dmi'
 density = 1
mob
 icon = 'player.dmi'

Figure 1.2: The Amazing Mapper

For most programs, adding graphic support is a massive chore. The facilities in Dream Maker, however, make
this task quite simple. For our example, we'll just draw a couple of icons and put them on a map.

1. Create a project called maze through the New Environment... option.
2. Create the main maze.dm file, and enter the following code:

3. Build the floor.dmi icon. Do this by selecting New File... and choosing Icon File for the type.
This will bring up a new window, with the option to build pixmaps (static, directionless, icons) and
movies (animated or directional icons). Choose New Pixmap... from the Graphic menu and show
off your artistic flair by drawing a picture of a floor. Repeat this step for
the wall.dmi and player.dmi icons.

4. With the three icons in place, the project should compile. Test this by selecting the Compile option.
If it is successful, you should be able to see your icons in the object tree tab on the left-hand side of
the screen. This tree illustrates the objects defined in your world.

5. You can run the world now, but you won't see any icons because you haven't put any objects on
the map yet. To build a map, again select New File... and choose Map File. You can name it
whatever you'd like; the .dmp extension will be appended, indicating that this file is a map.

6. Now for the fun part! Create the map by selecting objects from the tree and placing them with the
various functions. For example, to add a row of walls, select the Add function on the map pane,
click on the wall tile in the tree (it's underneath turf), and draw them on the map by left-
clicking the mouse. You can remove tiles by right-clicking. The map editor has considerable
functionality; you can learn about it by reading the included documentation.

7. Compile the new, graphical project and run it with Dream Seeker. If all goes well, you should see
your creation on screen. Your avatar can roam the floors and bump into the walls. Not too bad for
a couple minutes of work!

 turf
 floor
 icon = 'floor.dmi'
 wall
 icon = 'wall.dmi'
 density = 1
mob
 icon = 'player.dmi'

The reason we did not have to set the density of the floor to 0 is that the default density of a
turf is 0. Since the floor is derived from a turf, it inherits all the default properties of one. This
sort of inheritance of characteristics is one of the important elements of object-oriented
languages like DM. Ultimately, it is just a compact way of describing closely related things.

Before you test this example, you will need to design the icons and the maze itself. Fortunately,
this process is a natural part of Dream Maker's functionality (see figure 1.2).

When you are done making the map, you can compile and test the world. When you log in, you
should be able to walk around in the maze you designed by using the arrow keys. Amazing!

Of course there are always small details that one doesn't think about until after the fact. For
example, where is the starting point in the maze? We never specified, so players are just
dumped onto the map in the first available spot. Here is one way to do it:

You will have to make a new icon for the start turf and then edit the map to mark the
starting position with it.

The code that makes the initial placement of the mob is in the Login proc. It sets the location of
the mob (loc) to the position of the start turf. This is done by using the locate()instruction--one
of the many built-in procedures in DM (see figure 1.3). It computes the position of an object
type (in this case, the start turf).

turf
 floor
 icon = 'floor.dmi'
 start
 icon = 'start.dmi'
 wall
 icon = 'wall.dmi'
 density = 1
mob
 icon = 'player.dmi'
 Login()
 loc = locate(/turf/start)

Notice how the object type /turf/start is specified. This notation is called a type
path because of the way you specify the path (starting from the root) down to the specific type
of object you want.

Now suppose you forgot to put a start turf on the map. What would happen?
The locate() instruction would fail and the player would not get placed on the map and
therefore wouldn't even be able to see the maze after logging in. A total disaster! Wouldn't it
be nice to fall back on the default behavior of at least putting the mob somewhere on the map?
In other words, we have to somehow run the default Login proc as well as the one we defined,
just in case there is no start turf. Here is how to do it:

The final line does the job. It invokes a procedure with a strange name: just two dots. That is
the name DM uses for the default procedure, more generally known as the parent or super
procedure. In the case of Login, the default proc checks to see if the mob is somewhere
already. If not, it finds a vacant spot on the map, which is just what we wanted.

Now you can begin to see the general flavor of DM programming. There are a number of events
(Login being one) which are handled by procedures. When necessary, you can override the
default procedure with one of your own to make things work exactly how you want.

This is another important component of object oriented programming. Each type of object can
respond to events differently. The way in which they respond is inherited from their parents by
default, but can be redefined and augmented as needed.

This introduction has just scratched the surface of DM. You should begin to see some
interesting possibilities. At the same time, you should have a lot of unanswered questions. Keep
both of those in mind; they will be your guide through the more detailed exploration of the
language that follows.

mob
 Login()
 loc = locate(/turf/start)
 ..()

Figure 1.3: Help is on the way!

No programming environment is complete without a comprehensive, accessible reference. Dream Maker
provides this in the form of a searchable index of topics and built-in properties. You may access this by
selecting Help On... in the menu, or by hitting the F1 key. If the cursor is positioned on a word (such as
"locate"), help will be found for that topic.

Chapter 2
Navigating The Code Tree

The real nature of this cosmic tree cannot be known here, nor its beginning, nor end, nor
foundation.

--Bhagavat Gita

The previous chapter was a quick introduction to give you a taste for DM programming. This
and the next few chapters will cover the same basic ideas in greater detail.

A DM program begins at the root of the tree and descends along multiple branches. Each
branching point (or node) is given a name to distinguish it from the other branches at the same
level. Names are case-sensitive (so apple and Apple are different). They may be any length and
may contain any combination of letters, numbers, and underscores as long as they do not start
with a number.

Consider the following code:

Several types of traps are defined (though no instructions have been included to actually make
them work). Here, each type of object is on a line by itself and indentation is used to define the
relationships between them. The three siblings pit, quicksand, and glue are all children of trap,
which is in turn derived from turf, the map terrain object.

1. Formatting Code
DM provides some flexibility in the way code is formatted. For example, blank lines may be
inserted between other lines without effect. This may help code from getting too dense and
unreadable.

To compress code that is overly spread out, a semicolon may be used in place of a newline. In
this way, several children may reside on the same line. To put a parent and child on the same
line, a slash is used. It is equivalent to a newline followed by an additional level of indentation.

The following code is equivalent to the previous example:

turf
 trap
 pit
 quicksand
 glue

turf/trap
 pit; quicksand; glue

In addition, braces may be used to mark the beginning and ending of a node's children. C, C++,
and Java programmers may feel more at home using this style. With the compiler checking both
braces and indentation, it is hard for simple mistakes to slip through unnoticed. Sometimes it is
the simple spelling and typesetting errors which are the hardest to see.

Here is yet another encoding of the same objects, this time using braces:

You may use either tabs or spaces in any number to indent your code. The only requirement is
that you be consistent. Each block of code must use the same type of indentation throughout.
In general, DM provides enough freedom to format your code the way you like without so
much freedom that mistakes are likely to slip through unnoticed.

2. Compilation Errors
While we are on the subject of mistakes, you may as well make one now on purpose so you
know what is going on later when it's not on purpose. Remove one of the braces from the
above code and try compiling it. You should get a compilation error. If you double-click on it,
the cursor will jump to the line in the code where the compiler ran into trouble. You can correct
the problem and then try recompiling.

Often, you will need to think less like a human and more like a machine to see what is wrong.
Forget about what the code is trying to do and focus more on its form: the grammar, the
spelling, and little fussy details that only a computer would care about.

The more frequently you compile your code, the less trouble you will have in locating problems.
Also realize that if there are many compilation errors, some of the later ones may just be
confusion caused by earlier ones. Try fixing the first few and recompiling if the rest don't make
any sense.

turf/trap
{
 pit
 quicksand
 glue
}

3. Paths in the Tree
You have already seen how to use a slash to make code more compact. It is used to separate a
parent and a child node, for example turf/trap. This notation is known as a path because it
tells the compiler how to get from the current position in the tree to some other point by
enumerating the branches to take along the way. If a given branch doesn't exist, it will be
created.

Paths have several uses. Sometimes indentation can get so deep that it becomes hard to read.
You can use paths instead to get deep down inside the tree without indenting so much to get
there. Another time to use a path is when you want to branch off of existing objects from
somewhere else in the code.

The following example adds some variation to the basic pit that was already defined.

You could place this code at the bottom (or even the top) of the same file or in another file.
(You will see how to use multiple files in chapter 19.)

Finally, there are a few rare cases in which you may want to use an absolute path--that is, a
path starting with a slash. This allows you to derive something from the root even if you are not
currently at the root. Now does not happen to be one of those rare cases; using an absolute
path would only make the code more confusing.

If you think you know how things work, take a look at this:

If you guessed that this is yet another encoding of the same three traps, you have passed
obfuscation level one.

turf/trap/pit
 tar
 lava
 bottomless

turf {
 trap {pit; /turf/trap/quicksand}
 /turf/trap/glue
}

4. Code Comments
When you start writing code as confusing and tangled as the last example, it would be a good
idea to leave a few clues behind. Otherwise you may find it incomprehensible the next time you
visit, a rather embarrassing situation. There are two ways to write comments in the code. One
is for multi-line comments and the other is for single line ones. Example:

Comments can occur anywhere in the code--at the end of lines, on lines by themselves, or
wherever. They are often used to make statements of intent or purpose. It frequently takes
only a very short note to make code much easier to read.

/*
 This is a multi-line comment.
 You can put whatever you want inside of it.
 The compiler just skips right over.
 Some of you may recognize it as a C style comment.
*/

//This is a single-line comment.
//Some people know of it as the C++ style comment.

Chapter 3
Objects in the Tree

As mind is the witness and reality of all dream-objects, so soul is the only reality in the diversities
of this universe.

--Bhagavat Gita

There are four basic object types. Each has its own special properties, as well as those that they
all share. The basic objects are mob, obj, turf, and area. There are other objects as well, but
these four are the ones which are visible to players. We call them atomic objects.

The simplest difference between them is the order in which they appear on the map. Areas are
drawn in the first layer. The icon of an area is often simply a solid background color. Turfs are
drawn on top of areas; these usually represent some type of terrain like grass, roads, or walls.
Objs are drawn next, and might stand for items such as swords or cookies. Mobs are drawn on
top of everything else. They normally represent players or computer-controlled creatures. (The
term mob stands for mobile object. It is also suggestive of monster, which is a common role
they play.)

On the map, the mobs and objs are said to be contained by the turf. That in turn is contained by
the area. It is also possible for mobs and objs to contain things. For example, a chest obj might
contain a bunch of treasure items; and a player's mob could contain all the player's possessions.

Notice how I keep using words like `might,' `could,' or `normally.' That is because DM gives you,
the designer, a great deal of flexibility. Many of the basic object properties were defined with a
particular purpose in mind. That doesn't mean you have to use them that way. The meaning of
the game objects is up to you.

Figure 3.4: Atomic Objects from Lowest to Highest Drawing Layer

area

turf

obj

mob

1. Object Properties
First let us look at the properties that all of the objects have in common. We have already seen
that they each have a name and an icon. These are variables. (There are also some procs, but
the discussion of those takes place later in chapter 7.) Here is a list of each variable and a
description of its purpose.

• name

This is the name of the object, which by default is the same as the type (i.e. node) name with
any underscores replaced by spaces.

• gender

The grammatical gender of the object may be set using this variable. The possible values
are "neuter", "male", "female", and "plural". The default is "neuter".

• desc

This is a description of the object. It often appears in the "stat" panels when the player
examines the object. Controlling the content of those panels will be discussed in section 7.3.

• suffix

This is some text commonly displayed after the name of the object in the "stat" panels. For
example, this could indicate the status of equipment items: "(weapon in
hand)", "(worn on body)", and so on.

• text

This is a single character used to represent the object on a non-graphical map. If you have ever
played rogue or any of its derivatives, you will know what this means.

• icon

This is the icon file used to graphically represent the object.

• icon_state

Icon files may contain several alternate representations for an object. For example, a door
could be open or closed. This variable is the name of the currently active state.

• dir

This is the direction the object is facing. Some icons may be directional, meaning that they look
different depending on which way the object is pointed. This is most often used for mobs,
which change direction as they move around.

• overlays

This is a list of icons or object types which appear on top of the object's main icon.

• underlays

This is a list of icons or object types which appear underneath the object's main icon.

• invisibility

This determines the object's level of invisibility. The corresponding mob variable see_invisible
controls the maximum level of invisibility that the mob may see. It is 0 to 101 to control the
visibility of the object.

• luminosity

This is 0 to 6 to indicate how far the object emits light. Only areas are luminous by default,
which has the effect of casting light on everything else in the area.

• opacity

This is 1 or 0 depending on whether the object blocks light. An opaque object will block the
view of objects behind it.

• density

This is 1 or 0 to indicate whether the object fills up the space it occupies. Only mobs are dense
by default. Normally, no two dense objects may occupy the same position (but you will see how
to circumvent that in section 7.1).

• contents

This is a list of all the objects directly inside of an object. The term often used in the case of
mobs is inventory. You will learn more about this and lists in general in chapter 10.

• verbs

This is a list of the verbs (that is, commands) associated with the object. These will be discussed
in chapter 4.

• type

This is the type path of the object. For example, it might be /turf or /turf/trap. You
could look at this value in a procedure in order to find out what type of object you are dealing
with.

1.1 Location
The following location variables apply to all object types except areas, which never exist inside
other objects. These variables are only used in proc code, which will be discussed in chapter 6.

• loc

This indicates the container of an object. In other words, if object A contains object B, B's loc
will be equal to A, and B will exist in A's contents list.

• x, y, z

These indicate the position of an object on the map. Valid coordinates start at (1,1,1). The x and
y coordinates represent east/west and north/south positioning, respectively. The z coordinate
specifies the map level.

1.2 Additional Mob Properties
In addition to these commonly held variables, mobs add a few of their own.

• key

This is the login name of the player. By default, when a new mob is created for a player, the
mob's name is set equal to this. Every key is unique--even when stripped of punctuation and
ignoring case. That makes it a good way to keep track of people.

• ckey

This is the player's key in canonical form (stripped of punctuation and converted to lowercase).
This is useful when saving information about the player for future use. More will be said about
doing that in chapter 12.

• client

This is the player's client object (if any). The client object will be described in chapter 9.

• sight

This value controls special visual powers of a mob, permitting sight of invisible or obscured
objects. It can be one or more of the following numerical constants added together: SEEINVIS,
SEEMOBS, SEEOBJS, SEETURFS, BLIND.

(Normally, one uses the bitwise OR operator | to combine sight values. However, you can use a
plain old + as long as you don't include the same value more than once.)

• group

This is a list of one's mob friends. It serves the very practical purpose of avoiding traffic
problems. When a friend tries to move past another, the two switch places. Otherwise it can be
rather annoying to continually bump into each other. This variable would be manipulated in the
proc code.

2. Assigning Variables
By assigning a few variables, one can create a wide variety of objects. This is done in the object
definition. For example, here are a few different combinations of opacity and density.

This example defines four turfs: floor, wall, secret_door, and window. One can walk
and see across the floor but not the wall. The secret door is just like a wall, except one can walk
through it. To round out the set, the window is transparent but not traversable.

Notice how we had to explicitly set the name of the secret door to wall to prevent the

default secret door from taking effect. You would also need to do this if you wanted the
name to contain a character that is not allowed in a node name.

turf
 floor
 icon = 'floor.dmi'

 wall
 icon = 'wall.dmi'
 density = 1
 opacity = 1

 secret_door
 name = "wall"
 density = 0

 window
 icon = 'window.dmi'
 density = 1

2.1 Constant Values
This example illustrates three basic types of values: numbers, text strings, and resource files.
These are called constant values.

2.1.1 Numbers
Numerical constants may be positive or negative, integer or floating point, and can make use of
scientific notation. For example 3.15e7 or 31500000 is approximately the number of seconds in
a year. The maximum possible value is 3.4e38 and the smallest is 1.4e-45. (The numerical limits
are those of a single-precision IEEE floating point value, in case you were wondering.)

2.1.2 Text
Text constants are often simply called strings by programmers because they consist of a string
of characters. They begin and end with a double quote. There are several special text
macros that can be used inside the text. For example, a name is assumed to be a proper noun if
it is capitalized. You can override that by using the \improper text macro.

Like all text macros, \improper begins with a backslash. The space after it serves merely as a
separator and is ignored. A complete description of this and other text macros will be given in
section 11.3.

In this particular example, the purpose of using \improper is to modify how the name of the
object is treated in output text. As an improper noun, it would produce sentences like "You
insert the CPU." rather than "You insert CPU." You will see exactly how to construct sentences
like that later.

obj/CPU
 name = "\improper CPU"

2.1.3 Resource Files
Resource files, such as icons or sounds are specified inside single quotes. For instance, to access
an icon file located at C:\myworld\man.dmi, you would enter the value 'man.dmi'. You
can make use of sub-directories within your project to organize things as you wish.

2.2 Constant Macros
If you use a particular value in several places, you might want to define a macro for it, rather
than repeatedly entering the same value. This is also useful if you want to be able to easily
change the value in the future. Rather than hunt for it in your code, you can simply change the
definition. To easily identify them in the code, it is standard practice to capitalize macros.
Example:

This example defines a special mob type for use by the DM (Dungeon Master, Dream Maker,
Dan Maestro, or whatever self-serving title you desire). No code has been included to this
effect, but one could give the DM all sorts of awesome powers to manage the game. By
defining the MASTER_KEY macro at the beginning of the code, it is easy to notice and change
at a later date (say if someone else takes over).

When players log in, before creating a mob for them, a search is first made to find an existing
mob or type of mob with the corresponding key. If one is found, that mob becomes the player's
avatar. Otherwise, a new mob is created for the purpose and assigned the player's key.
Therefore, a player who logs out and comes back later would normally re-inhabit the same
mob.

#define MASTER_KEY "Dan" //The all-powerful super-user!

mob/DM
 key = MASTER_KEY

3. Putting It All Together
As a demonstration of all four basic object types, consider the following example:

Make the necessary icons and a map. Spread the dark area out over part of the map to see
what effect it has when you walk around in it. If you change the name of the DM's key to match
your own, you should be able to walk through walls.

If you play around with this code a bit, you will undoubtedly run into things that you are not
sure how to do yet. For example, what if you want the DM to be able to turn off the special
ability of walking through walls at will? How about a command to create a torch with the wave
of a hand? Such actions require the stronger magic of verb procedures. Read on!

area/dark
 luminosity = 0

obj/torch
 icon = 'torch.dmi'
 luminosity = 3

turf
 floor
 icon = 'floor.dmi'
 wall
 icon = 'wall.dmi'
 density = 1

mob/DM
 key = "Dan"
 density = 0 //I can walk through walls!

Chapter 4
Verbs

It might be only a dream after all, part and parcel of this magic house of dreams.

--L.M. Montgomery, Anne's House of Dreams

Players have several ways to interact with their world. They can move around with the arrow
keys, select objects with the mouse, and type commands (or select them from a menu). In DM,
the commands you define for players to use are called verbs. They form a sort of player
language.

1. Defining a Verb
Verbs are always attached to some object. This is done by putting the verb inside the object
definition. This object is called the source of the verb. The simplest case, is a verb attached to
the player's mob.

This example defines a verb called intangible. A player who has executed this command
can walk through other dense objects like walls.

As you can see, the definition goes inside a node called verb and is followed by parentheses.
The name of the verb itself (like any node) follows the same rules as an object type name. It is
case sensitive, consists of letters, digits, and underscores, and must not start with a digit.

2. Setting Verb Properties
Just as with object types, you can override the actual name of the verb (as seen by the user) to
overcome the limitations of the node name. This is done with the set command. Example:

mob
 verb
 intangible()
 density = 0 //now we can walk through walls!

obj/lamp/verb/Break()
 set name = "break"
 luminosity = 0

The reason the verb node could not be directly specified in lowercase is that there is a reserved
word break that prevents this. Capitalization is a simple way to avoid conflicts with reserved
words because they never begin with a capital letter. (If you are curious about the meaning
of break hang on until chapter 6.)

Notice the condensed style using slashes in place of stair-step indentation. The use of
the set command distinguishes between an assignment of the object's name and an assignment
of the verb's name. Also note that the name assignment is said to take place at compile-
time rather than run-time. Otherwise, like the assignment of luminosity, it would not happen
until the verb was executed by the player.

There are other properties of a verb that can be configured using the set command. They are
presented in the following list.

• name

As you have already seen, this is the name of the verb as seen by the user. It defaults to the
node name with any underscores replaced by spaces.

• desc

A description of the verb. Players can see this by typing the verb name and pressing F1. Another
way is to hold the mouse over it in the verb panel. The syntax is described for you, by default,
but if you wish to override the way individual arguments appear, you can do so inside
parentheses at the beginning of the text. See section 4.5.1 for an example.

• category

Verbs can be grouped by assigning a category name of your choosing. They will show up
accordingly in the verb panels.

• hidden

This is 1 or 0 to indicate if the verb is secret. A hidden verb will not appear in the panels and will
not be expanded on the command line. As a slight variation of this, verbs beginning with a dot
are like hidden verbs except they expand once at least the dot has been typed. You might, for

example, have a large number of social commands that you don't want cluttering up the normal
verb menus. In that case you would probably want to use the dot prefix to hide them.

• src

This is where you define the relationship between the user and the source of the verb. The
effect is to control who has access to the verb. See the explanation in the next section.

3. Verb Accessibility
One of the most important aspects of a verb is what it is attached to and who may use it. The
intangibility verb seen earlier in this chapter is attached to a mob and accessible to the mob's
player alone. You can use your own intangibility verb and other people can use their own
intangibility verbs, but you can't use each other's verbs. If you could, it would be possible to
turn each other intangible.

Of course, in some cases, you might actually want people to be able to use each other's verbs.
To do that, you need to override the default accessibility settings. Before we get into that, you
need to understand how the defaults work.

When a verb is attached to a mob, the default accessibility setting is set src = usr. That
means the source of the verb must be equal to the user of the verb. Nobody else is allowed to
use it (or even see it). This statement makes use of two special pre-defined variables. The
variable src refers to the object containing the verb--that is, the source object. The
variable usr refers to the mob (of the player) who is using the verb.

Here is a commonly used verb which allows people to turn each other into potatoes.

mob/verb/make_potato()
 set src in view()
 name = "potato"
 desc = "Mmm. Where's the sour cream?"
 icon = 'potato.dmi'

Instead of the default accessibility (src = usr) this verb uses src in view(). That
means anyone within view of the user can be turned into a potato. The view procedure
computes a list of everything which is visible to the user.

Also note that in this example an underscore was used in the name of the verb. This will be
automatically converted into a space in the name of the command. However, when the user
types it in, a `-' will be inserted on the command line instead of a space. That is because spaces
are only allowed on the command line between arguments or inside of quotes. The user
doesn't have to worry--the substitution of a dash happens automatically.

Consider instead a verb that is attached to an obj.

The verb extinguish in this example causes a torch to stop shining. It again makes use of
the view instruction, but this time an additional parameter is specified to limit the range. In this
case, the range is 1, so the torch must be in the user's turf or an adjacent one for the verb to be
accessible. Somebody standing across the room will not be able to extinguish the torch.

Try this example on a suitable map with some torches scattered about. If you move up to a
torch and type "extinguish torch" it will go out (see figure 4.5).

obj/torch/verb/extinguish()
 set src in view(1)
 luminosity = 0

Figure 4.5: Look Ma, no hands! (and other ways to avoid typing...)

You need not worry about players having to deal with typing lengthy commands. Dream Seeker
provides many convenient ways to ease the burden on the users' fingers. For example, there are
several methods for a player to access the aforementioned extinguish torch verb:

1. Type "extinguish torch".
2. Type the first few letters of the command, for instance, "ex" and then hit the spacebar

to expand the command. Dream Seeker will fill in the remaining letters, indicating
ambiguity on-screen.

3. Click on the "extinguish" entry in the on-screen verb panels.
4. Right-click on the torch to pull up a context-menu from which the extinguish verb

may be selected.

You may have noticed a subtle difference between the extinguish verb and
the intangible verb seen earlier. In one case we just had to type "intangible" and in
the other "extinguish torch". In the first case we didn't have to specify the verb source
and in the second case we did. The term for this difference is an implicit versus an explicit
source.

3.1 Explicit versus Implicit Source

Suppose one practices a religion in which praying must be done in the vicinity of a torch. We
don't want the command to be "pray torch" but just "pray". In other words, we want an
implicit source, not an explicit one.

Whether the source syntax is implicit or explicit depends on how the src setting is specified.
If src is assigned (e.g. set src=usr or even set src=view(1)) the computer
automatically picks the source from the available possibilities. On the other hand, if src is not
assigned but just limited to anything in a list (e.g. set src in view(1)) it is up to the user
to specify the source--even if there is only one choice. This gives the designer control over the
command syntax.

Return to the example of torch enabled prayers. Since we want an implicit source, we use = to
assign the source rather than in, which would merely limit it.

In general, one uses an implicit source when the mere presence of an object gives the user
some ability that is otherwise independent of the source object. Another case (like set
src=usr) is when the source object is always unique. Verbs in this latter case are
called private verbs because they are only accessible to the mob itself.

obj/torch/verb/pray()
 set src = view(1)
 //God fills in this part!

3.2 Default Accessibility

For convenience, verbs attached to different object types have different default accessibilities.
These are summarized in figure 4.6.

Note that the default obj accessibility is really an abbreviation for src in usr.contents,
which means the contents (or inventory) of the user's mob. As you shall see later on, the in
operator always treats the right-hand side as a list--hence usr is treated as usr.contents in this
context.

In the case of both turf and area, the default accessibility is view(0) and is implicit. Since the
range is zero, this gives the player access to the verbs of the turf and area in which the mob is
standing.

Making use of this convenient default, suppose we wanted a dark area to have a magical trigger
that would turn on the lights at the sound of clapping hands. You could do it like this:

Figure 4.6: Default Verb Accessibilities

mob src = usr

obj src in usr

turf src = view(0)

area src = view(0)

area/dark/verb/clap()
 luminosity = 1
 //Abracadabra!

3.3 Possible Access Settings

There are a limited number of possible settings for a verb's source access list. They are
compiled in figure 4.7.

Two of these (namely, usr and usr.loc) are not lists of objects but instead refer to an individual
item. For that reason, they behave a little differently when used in an assignment versus
an in clause. Don't let that confuse you--it's really quite simple. When used in an assignment,
they are treated as a single object. When used with in they represent the list of objects that
they contain.

The rest of the src access settings are all lists. The view instruction has already been mentioned,
but it requires a little more description so that you can understand the related oview
instruction.

Figure 4.7: Possible Source Access Settings

usr

usr.loc

usr.contents

usr.group

view()

oview()

The view() list contains all objects seen by the user up to a specified distance. The list starts
with objects in the user's inventory, followed by the user herself, objects at her feet, then in
neighboring squares, and so forth proceeding radially outward. A distance of 0 therefore
includes the turf (and area) the user is standing on and its contents. A distance of 1 adds the
neighboring eight squares and their contents. The maximum distance is 5, since that includes
the entire visible map on the player's screen. (You will see how to change the map viewport size
in chapter 14.) Because this is often the desired range, it is the default when no range is
specified. The special range of -1 includes only the user and contents.

The related instruction oview() stands for `other' or `outside' view. It is identical
to view() except it doesn't include the usr or the usr's contents. In other words, it excludes
objects inview(-1), the so-called private or personal range.

As an example of using usr and usr.loc, consider a pair of verbs to allow picking up and dropping
objects.

To see how oview() might come in handy, suppose there was a magical torch that one could
summon from a greater distance than provided by the standard get verb.

Making use of the default range, torches can be summoned from anywhere in the player's
view. If we had used view() instead of oview(), objects already inside the user's inventory could
be summoned, which wouldn't make much sense.

obj/verb
 get()
 set src in usr.loc
 loc = usr
 drop()
 set src in usr //actually this is the default
 loc = usr.loc

obj/torch/verb/summon()
 set src in oview()
 loc = usr //presto!

4. Overriding Verbs
Suppose instead of a magical summon verb, we just wanted the get verb to have a greater
range for torches. This is an example of object-oriented programming in which a child object
type provides the same sort of operations as its parent but implements them differently.

Here is the code for such a modified get verb.

The example is written in full to demonstrate the syntax for overriding a previously defined
verb. Notice that inside torch, we do not put get() under a verb node. This indicates to the
compiler that we are overriding an existing verb rather than defining a new one.

The difference in the syntax for definition verses re-definition serves the purpose (among other
things) of preventing errors that might happen in large projects. For example, you might define
a new verb that mistakenly has the same name as an existing one, or you might try to override
an existing verb but misspell it in the re-definition. In both of these cases the compiler will issue
an error, preventing a problem that might otherwise go unnoticed for quite some time.

obj
 verb
 get()
 set src in usr.loc
 loc = usr
 drop()
 set src in usr
 loc = usr.loc
 torch
 get() //extended range
 set src in oview()
 loc = usr

5. Friendly Arguments
Verbs become much more powerful when you add the ability to take additional input from the
user. A programmer would call this a verb parameter or argument. You can define as many
arguments to a verb as you wish. However, most verbs only take one or two parameters.

Arguments are each assigned a different variable name inside the parentheses of a verb
definition. In addition to this, an input type must be specified. This indicates what sort of
information is required from the player. A generic verb definition would therefore look like this:

VerbName(Var1 as Type1,Var2 as Type2,...)

The variable names follow the same rules as everything else in the language. Case matters, and
it may consist of letters, numbers, and the underscore.

5.1 Parameter Input Types

The possible input types are listed in figure 4.8.

Figure 4.8: Parameter Input Types

text

message

num

icon

sound

file

key

null

mob

obj

turf

area

The first group are the constant input types. They all represent different types of data that the
user can insert. They may be used individually or in combination. To combine several types,
put | between them like this: icon|sound.

The text input type accepts a short (one-line) string from the player. For a longer composition,
the message input type is used.

Numbers are handled by the num input type. These, just like numbers in the language, may be
positive or negative, integer or floating point, and may even be specified in scientific notation.

There are three input types for resource files: icon, sound, and file. The last one, file, will take
any type of file as an argument, whereas the other two take only icons and sounds,
respectively. The related input type key takes a key entry from the player and is only used in
obscure situations.

The null input type is used in conjunction with other types. It indicates that the argument is
optional. Otherwise, the user is required to enter a value before executing the command.

The last group are the object input types. They are used to allow the player to select an item
from a list of objects. More will be said on lists of objects in section 4.8. By default, the list is
composed of all objects in view of the player.

Using the various input types, it is possible to compose verbs that give the player control over
his own appearance. For example, using the text input type, the name can be specified.

In the client, one could therefore enter a command like the following:

mob/verb/set_name(N as text)
 set desc = "(\"new name\") Change your name."
 name = N

set-name "Dan The Man

Notice in this example that the help text for the verb has been defined. First the syntax is
described in parentheses and then the purpose of the command is stated. (The reason there
are backslashes in front of the double quotes inside the text is to prevent them from being
mistaken for the end of the description. This is called escaping and will be discussed in more
detail in section 11.3.2.) If you position the mouse over the verb, the help text will be displayed.
It will look something like this:

If we had not specified the syntax help (in parentheses), it would have given a generic
description of the syntax like this:

Each type of argument has a different default appearance. Generally speaking, it involves the
name of the input type. If you think that will confuse the players, override it with your own text.

As a slight variation on the previous example, we could make a scroll object on which one can
write a message.

Notice that players must be within arm's reach to inscribe a message. We assume that
everyone has good eyesight so the complementary read command works as long as the scroll
is within view.

usage: set-name "new name" (Change your name.)

usage: set-name "text" (Change your name.)

obj/scroll/verb
 write(msg as message)
 set src in view(0)
 desc = msg
 read()
 set src in view()
 usr << desc

It is amazingly simple to do for the player's icon what we just did for the description. Here is a
verb that does the trick.

The command on the client could be issued something like this:

Here, single quotes surround the file name. As with text arguments, the final quote is optional
when there are no additional parameters.

6. Generating Output
The simplicity of the set_icon verb hides the power behind it. Think about what happens
when you use it. You enter the name of an icon file through the client and it magically appears
on the map. In a game running over the network with multiple users, it works just the same.
Behind the scenes, the file you specify gets transported to the server, which then automatically
distributes it to all the other clients. Transmitting multi-media files across the network is an
elementary operation in DM, little different than entering some numbers or text.

Speaking of multi-media, here is an example that makes use of the sound input type.

This plays a sound file (either wav or midi) to everyone in view. The << operator in this
context is used to send output to a mob or list of mobs. In this case, everyone in the list
computed by the view() instruction receives a sound file. (To be precise, only those people who
need a copy of the sound file will receive it. If they don't have sound turned on or if they
already have the file, it won't be transmitted.) If their machine is capable of playing sounds and

mob/verb/set_icon(i as icon)
 set name = "set icon"
 icon = i

set-icon 'me.dmi

mob/verb/play(snd as sound)
 view() << snd

their client is configured to allow it, the sound will automatically play for them. Not bad for two
lines of code!

The output operator << opens up all sorts of possibilities. For example, you can say things.

6.1 Variables in Text

Usually, however, you would want some indication of who is doing the talking. To do that, you
need a new piece of magic called an embedded text expression. It allows you to display text
containing variables.

In this example, the variables usr and msg are substituted into the text before it is displayed.
The result could be something like "Ug says, 'gimme back my club!'". As you can
see, the brackets [] inside of the text are used to surround the variables. Such a construct is
called an embedded expression. It is buried right inside the text but it gets replaced at run-time
by its value. More details will be revealed on that subject in section 11.3.

We can now make use of the object input types. For example, you can wink at people with the
following verb.

The possibilities for intrigue and secrecy increase with a covert version of the say command.

mob/verb/say(msg as text)
 view() << msg

mob/verb/say(msg as text)
 view() << "[usr] says, '[msg]'"

mob/verb/wink(M as mob)
 view() << "[usr] winks at [M]."

mob/verb/whisper(M as mob,msg as text)
 M << "[usr] whispers, '[msg]'"

This example uses two arguments to achieve its purpose. The first one is the target of the
message. The second is the text to transmit.

7. Flexibility in Choice of the Source
If you are paying close attention, a thought may have occurred to you. Couldn't these verbs
that take an object as an argument be written using that object as the source rather than an
argument? The answer is yes. For example, wink could be rewritten like this:

Instead of taking a mob as an argument, this verb defines a public verb on mobs that is
accessible to others in view, allowing them to wink at the mob. From the user's point of view,
these two cases are identical. From the programmer's view, however, it is sometimes more
convenient to use one technique over the other.

Suppose you wanted to make a special type of mob that when winked at would reveal a magic
word. In that case, the best way to do things would be to have the target of the wink be the
source of the verb. Then you can override the wink verb for the special mob type like this:

When winked at, the guard mob whispers back the magic word. Notice the line that executes
the .. (dot-dot) procedure. That is a special name that corresponds to the previous (inherited)
version of a verb (called the parent or super verb). This saved us from having to rewrite the line
that generated the wink output. That is what is meant by re-usable code in object-oriented
programming. With complicated procedures it can save you a lot of trouble.

mob/verb/wink()
 set src in view()
 view() << "[usr] winks at [src]."

mob/guard/wink()
 ..()
 usr << "[src] whispers, 'drow cigam!'"

If, instead, we had used the original version of wink which had the target mob as an argument,
we would have had to insert code in the general wink verb to check if the target was a guard
and act accordingly. In general, good object-oriented design attempts to confine code that is
specific to a particular type of object inside the definition of that object. This was achieved in
the above example by making the target the source of the wink verb.

In a different situation, the reverse might be the best strategy. For example, you might want a
special mob who kills people by winking at them. (If looks could kill...)

To do the nasty deed, we used the del instruction, which deletes an object. In this case, we
have assumed the existence of the first definition of wink() which takes a mob argument. By
organizing things this way, we were able to isolate the special code to the object it applied to,
in this case the DM.

Of course you might have even more complicated scenarios in which you want to do both
variations--that is, having code specific to the type of target and the user. It can still be handled
without violating good object-oriented design, but you would need some tools I haven't fully
described yet. (For example, you could define a second procedure that carries out a mob's
response to being winked at and invoke that from within a private wink verb.)

However, don't get too carried away trying to blindly adhere to object-oriented or any other
philosophy of code design. At the root of all such theories is the basic and more important
principle of keeping things simple. The simpler things are, the less likely you are to make
mistakes and the easier it is to fix the errors you do make.

The reason the object-oriented approach tries to confine code about an object to that object is
ultimately just organizational. When you want to change the magic word spoken by the guard,
you know where to go in the code to do it. And more importantly, if you want to change the

mob/DM/wink(M as mob)
 set desc = "This kills people, so be careful!"
 ..()
 del M //poof!

guard to an elf, you don't have to remember to also go and modify the wink verb to make elves
speak the magic word rather than guards--a seemingly unrelated task.

But such possibilities are hypothetical and should not take precedence over your own
knowledge about what future developments are actually probable. In some situations, the
simplest structure might be to confine all code having to do with winking to one place--a single
wink verb that handles every special case. That would be procedure-oriented programming, an
aged methodology (though tried and true). But who cares what the theory is. Get the job done
with clear, concise code. That's what matters in the end.

(Of course every true programmer knows that there is no such thing as an end. At best there is
a level of completeness that one approaches asymptotically. At worst ... well, never mind the
worst, those dark skeletons, cadaverous parasitic programs that suck at the soul until one yields
again, hammering out another thousand lines of tangled spaghetti code, writhing like a nest of
tapeworms, and long sleepless nights turn into weeks, years, and still no sign of completion! Or
so I am told. Being one of the cheery daytime programmers, in bed before midnight and up to
milk at dawn, I wouldn't know whether such horror stories are true. If it happens to you, I can
give a few pointers on keeping a cow.)

8. A Choice of Arguments
Notice how in the previous section, there was a slight asymmetry in the two versions of wink.
In one case the target was a mob argument and in the other it was the source. In the latter
case, we specified that the source could be anywhere in view of the user, but in the case of the
argument we never said anything about the range. What if we wanted to restrict winking to a
shorter distance in that case?

As it happens, arguments can be limited in much the same way as the source of a verb.

VerbName(Var1 as Type1 in List1,Var2 as Type2 in List2,...)

For example, here is a verb for prodding your neighbor.

The use of the in clause in the argument definition limits the user's choice to mobs in
neighboring positions. You can use any list expression to define the set of possible values. The
most common ones are those available for defining the range of a verb source (section 4.3.3).
When no in clause is used, the default list for mob, obj, turf, and area input types is view().

For example, here is a verb to communicate (by frequency modulated electromagnetic waves)
with any other player in the game.

Actually, world is an individual object, but in this context it is treated as a list and is therefore an
abbreviation for world.contents, a list of every object in the game.

9. Default Arguments
Verb arguments can be made optional by using the null input type. If the user does not enter a
value for the argument, it will be given the special value null. In this case, one will often need to
check if the argument is indeed null and handle things accordingly. This can be automated in
the case where you just want a default value to be substituted for null by assigning the default
value in the variable definition.

The most general syntax for an argument definition contains the variable name, a default value,
an input type, and a list of possible values.

variable = default-value as input-type in list

mob/verb/poke(M as mob in view(1))
 view() << "[usr] pokes [M]!"

mob/verb/commune(M as mob in world,txt as text)
 M << "[usr] communes to you, '[txt]'"

If a default value is specified, the null input type is automatically applied, since that is necessary
to make the argument optional.

This example defines a verb that controls the player's density. If no arguments are given, the
mob will be made dense; otherwise the value specified by the player will be used.

10. anything input type
The anything input type allows you to combine other input types with items from a list. Its
purpose is to make clear the fact that the constant input types are in addition to whatever may
be in the object list.

The following example allows you to change your icon, with the option of selecting the icon
from a file or from any other object in view.

Note that this happens to work because assigning an object to the icon variable causes that
object's icon to be assigned instead. (That behavior exists because I did not want to introduce
conditional statements yet. Such are the hoops a programmer will jump through to avoid extra
documentation!)

mob/DM
 verb
 set_density(d=1 as num)
 set name = "set density"
 density = d

mob/verb/set_icon(I as icon|anything in view())
 icon = I

Chapter 5
Variables

All your hours are wings that beat through space from self to self.

--Kahlil Gibran, The Prophet

A DM program is ultimately a black box that takes in and spits out information. On the inside of
this black box are a bunch of little compartments where it holds the information that it is
working on. These are called variables and each one has a little label on it carved in cuneiform
script by the hand of an ancient Babylonian black box engineer.

1. Global Variables
So far, you have seen object variables and argument variables. There are two other places
where variables may reside. One is inside a procedure and the other is inside of nothing at all--a
so-called global variable.

A global variable would generally be used to hold some information that is an attribute of the
entire world. For example, you could store the state of the weather there.

This example has three parts: a global weather variable, a verb for players to check the
weather, and a verb for the DM to set the weather. The chief point of interest is the variable
definition. It goes under a var node at the root of the program (which is what makes it global).
In this example, the weather variable was assigned an initial value (so the DM doesn't have to
remember to do it). The initial value is an optional part of the variable definition.

var/weather = "Looks like another beautiful day!"

mob/verb/look_up()
 usr << weather

mob/DM/verb/set_weather(txt as text)
 weather = txt

2. Object Variables
The position in which a variable is defined determines its scope. A variable defined at the root
(top level) of the code is therefore globally applicable. (Note that when we say top level of the
code we mean the root of the code tree. That doesn't mean it has to be at the top of your file
(though global things often are).) A variable defined inside of an object definition only applies
to that object and its descendants.

2.1 Defining An Object Variable
You have already been using object variables like name, and icon, but they were already
defined for you. You can add your own variables for purposes not covered by the built-in ones.
For example, you could have a variable for the monetary value of an object.

When the variable is first declared, it is put under a var node. After that, when its initial value is
overridden, it is simply assigned without a re-declaration. This is similar to the way verbs are
declared and then overridden. The syntax serves the same purpose of preventing mistakes from
slipping past the compiler.

obj
 var/value
 stone
 value = 1
 ruby
 value = 50
 diamond
 value = 100

2.2 Accessing An Object Variable
In a procedure, it is possible to access object variables. We have already seen this for the case
of verbs that modify properties of their source. For example:

However, what if we wanted only the DM to have the ability to set the value? The verb just
defined gives everyone the ability to do so. Instead of attaching the verb to the obj, we really
want it attached to the DM. However, then we would have to access the value of the obj from
inside the DM's verb. That requires defining a variable type. Here is how it is done:

The first variable is declared as obj/O, which says that O is an obj and therefore has all of the
variables of an obj. To access the variable, the dot operator is used. The variable O goes on the
left and the name of O's variable that we want to access goes on the right. The dot operator
allows us to access the object variables belonging to O.

Look again at the syntax for the first argument. We could have written it obj/O as obj in
view(), but since the variable is declared to be of type obj, the rest is assumed by default.
The long version is good to understand, though. The first obj in it is a variable type. The second
obj is an input type. The DM language does not require that these be identical. In the future
you will see how that can be used to your advantage; most of the time, however, it is
convenient that the input type defaults to match the variable type.

2.2.1 Declaring Variable Types
In DM, a variable you define can be assigned any type of value. The same variable could hold a
text string, a number, or some type of object. If it is an object, and if the programmer needs to

obj/verb/set_value(v as num)
 set src in view()
 value = v

mob/DM/verb/set_value(obj/O,v as num)
 O.value = v

access that object's variables, only then is it necessary to inform the compiler what type of
object the variable represents.

This is accomplished in the definition by placing the type path in front of the variable name. It
could be obj/O or something longer like obj/scroll/O. In general, one would specify as
much of the type as necessary to get down to the level of the desired variables. For
example, obj/O would allow one to access O.name, O.icon, and any other basic obj
variables. A variable defined only for scrolls, say O.duration, would require a more specific
type definition like obj/scroll/O.

2.3 The usr and src Variables
Two variables that you have already seen can be used with the dot operator because their type
is automatically defined for you. The variable usr is declared as var/mob/usr since it always
refers to the mob who is executing a verb. The variable src has the same type as the object
containing the verb (obviously).

Since accessing the variables of src is such a common task, you can do it directly without the
dot operator. We have been doing that all along. For example, you can just use value in place
of src.value. The two are equivalent. (C/C++ and Java programmers will recognize that src is
similar to what they know of as this.)

The usr variable, on the other hand, is useful when the src and usr are different objects. For
example, one could make a disguise object that changes the wearer's appearance.

obj/disguise
 verb/wear()
 usr.icon = icon //zing!

To allow the user to remove the disguise, you would need to store the original icon in a
variable. You could do it like this:

Here is an interesting thought. What if somebody finds a discarded disguise and removes it
without wearing it?! That is the kind of freaky stuff players like to try. Never trust them! Wait
until the next chapter for the tools to stop such funny business.

3. Procedure Variables
Verb arguments are a special type of procedure-level variable. The built-in
variables usr and src also exist at that level. You can define your own variables inside of a
procedure using the same syntax for defining variables as elsewhere.

Suppose you wanted two objects to exchange appearances--a slightly different effect from the
disguise object. In this example, possession of the magic scroll gives one the ability to pose as
the scroll while it appears like you. (Don't try this in the lavatory or somebody is bound to make
a terrible mistake.)

obj/disguise
 var/old_icon
 verb
 wear()
 old_icon = usr.icon
 usr.icon = icon
 remove()
 usr.icon = old icon

obj/mirror_scroll
 verb/cast()
 var/usr_icon = usr.icon
 usr.icon = icon
 icon = usr_icon

The intermediate variable usr_icon accomplishes the exchange of images. We could have
assigned it in a separate statement, but initializing it in the variable definition was easier.

4. The Life of a Variable
Variables can be defined at the top level, inside an object, and inside a procedure. These three
different locations (or scopes) determine the range of access and life span of a variable.

Global variables are initialized at the beginning of time and exist until the end of it (for their
world that is). Object variables are initialized when an object is created and exist until it is
destroyed. Every object has its own copy of each variable. That is different from global variables
which exist once and for all. At the very lowest level, procedure variables come into existence
when the procedure is executed and cease to exist when it stops. These are often called local
variables.

The scope of a variable determines its order of precedence. Consider, as an example, a case in
which a procedure variable has the same name as an object variable.

We defined a procedure variable (actually an argument) called name, which is the same as a
mob variable. The procedure level variable takes precedence over the object variable. In order
to access the object variable, we had to explicitly use src.name rather than just name.

Similarly, global variables take a lower order of precedence than object or local variables. In this
case, a conflict can be resolved by using global.name. It is safest, however, to avoid such
name conflicts altogether since mistakes made in these cases can be difficult to see.

In the interests of avoiding name conflicts, it is sometimes desirable to have something that
behaves like a global variable but which is defined at a lower level. For example, the variable

mob/verb/call_me(name as text)
 name = name //obviously not what you want
 src.name = name //this is what you want

may only be of interest to a small portion of the code but one may still want there to be a single
permanent copy of it. The best thing to do in this case is to flag the variable as global but define
it at the level where it is applicable. (Many languages use the term `static' instead of `global' to
define a variable with limited scope but global existence. It is the same thing.)

As an example, you could make some magic papers such that when you write on one of them,
the same writing appears on all the others.

By defining the message variable inside magic_paper, we avoided cluttering up the global
name space with something that only applied to the code in this object. The global flag is simply
inserted after var in the variable definition. This prevents each piece of magic paper from
having a separate, independent copy of the variable holding the message. It also frees up the
variable name msg to be used elsewhere in the code without conflicting with this one.

5. Constants
Another flag that can be applied to a variable is const. This marks the variable as one that can
be initialized but never modified. We call this a constant variable (which is a bit of an
oxymoron).

The purpose of const is to keep your code from getting too cluttered with so-called magic
numbers and other such values that are used repeatedly and which may need to be adjusted in
the future. You have already seen another way to handle global constants
using #define macros. However, the advantage of using a constant variable instead is that it
does not necessarily have to be global in scope. It is best to reserve the #define command for
situations which cannot be handled with const.

obj/magic_paper
 var/global/msg

For example, you could make a sort of doppelganger object--the reverse of a disguise.

Of course we could have just used 'doppel.dmi' everywhere in place of init_icon, but
then if we decided to use a different icon file at some point in the future, it would be more
complicated to do (and more likely to get messed up). (In this particular example, it would also
be possible to use the expression initial(icon) for finding the original compile-time value
of a variable.)

6. Memory and Variables
While on the subject of memory, some of you may be curious about how information is actually
stored by a DM program. For example, when we assign icons around from one variable to
another, is the actual data of the icon file getting copied and duplicated? Fortunately, the
answer is no, or many operations would be a lot less efficient.

In DM, variables actually only contain two types of data: numbers and references. Numbers are
simple. When you assign a number to a variable, a copy of the number gets put in the variable.
If you modify that variable, nothing else changes--just the number inside it gets altered.

All other types of data are handled through references, which point to where the data is
actually stored. (C programmers will recognize that DM references are pointers.) In that way,

obj/doppelganger
 var/const/init_icon = 'doppel.dmi'
 icon = init_icon

 verb
 clone()
 set src in view()
 icon = usr.icon
 revert()
 set src in view()
 icon = init_icon

several variables can contain references to the same piece of data, be it an icon, a mob, a text
string, or anything else. When the contents of such variables are copied from one to another,
only the reference is copied. The data itself is independent of such operations.

Programmers who are used to managing memory allocation for data like text strings will
appreciate the fact that DM takes care of garbage collection. That means when a piece of data
(like a message entered into the `say' verb) is no longer referenced by any variables, it is
automatically deleted from memory to make room for new data. This makes working in a multi-
media environment with text, icons, sounds, and so forth a lot easier. You simply don't have to
worry about it.

	Original Foreword
	New Foreword
	Acknowledgments
	Additional Acknowledgements

	Preface
	Meet the Dream Maker
	Navigating The Code Tree
	1. Formatting Code
	2. Compilation Errors
	3. Paths in the Tree
	4. Code Comments

	Objects in the Tree
	1. Object Properties
	1.1 Location
	1.2 Additional Mob Properties

	2. Assigning Variables
	2.1 Constant Values
	2.1.1 Numbers
	2.1.2 Text
	2.1.3 Resource Files
	2.2 Constant Macros

	3. Putting It All Together

	Verbs
	1. Defining a Verb
	2. Setting Verb Properties
	3. Verb Accessibility
	3.1 Explicit versus Implicit Source
	3.2 Default Accessibility
	3.3 Possible Access Settings

	4. Overriding Verbs
	5. Friendly Arguments
	5.1 Parameter Input Types

	6. Generating Output
	6.1 Variables in Text

	7. Flexibility in Choice of the Source
	8. A Choice of Arguments
	9. Default Arguments
	10. anything input type

	Variables
	1. Global Variables
	2. Object Variables
	2.1 Defining An Object Variable
	2.2 Accessing An Object Variable
	2.2.1 Declaring Variable Types

	2.3 The usr and src Variables

	3. Procedure Variables
	4. The Life of a Variable
	5. Constants
	6. Memory and Variables

